WAVE FORMATION IN EXPLOSIVE WELDING

5. K. Godunov, A, A, Deribas,
and N, S, Kozin

A hypothetical analogy between wave formation in explosive welding and the Karman vortex
street is analyzed, and the physical laws of the wave formation process are investigated.

In explosive welding periodic waves are usually formed at the contact surface of the colliding metal
plates (Fig. 1).

This was first observed by M. A, Lavrent'ev's group in 1944 [1]. Similar wave formation was ob-
served by Allen et al. [2]. Abrahamson [3] has offered a qualitative explanation of the wave formation
mechanism. In [4] and elsewhere it has been suggested that there is a parallel between the mechanisms of
wave formation as a result of impact and periodic vortex street formation as a result of fluid flow over a
cylinder, In [5], Bahrani, Black, and Crossland critically evaluated Abrahamson's ideas and put forward
their own qualitative hypotheses concerning the wave formation mechanism, basing their conclusions on the
notion of the periodic development and collapse of jets. In [6] an attempt was made to give a quantitative
description of wave formation based on the known instability of the tangential velocity discontinuity in an
ideal fluid. This attempt cannot be considered successful, since we now know of cases of wave formation in
symmetrical collisions, when there are no tangential discontinuities at all,

In the experiments described in [7, 8], a relation was established between the wavelength A and
amplitude a and the collision parameters. When the thickness of the stationary plate §, is many times
greater than that of the moving plate §;, this relation is given by

—g—l = 26 sin? —;— (7 is the impact angle) (1.0)

Under all impact conditions the wave amplitude ¢ for various metals was of the order of the wave-

length

af/M=0.25

The experiments also showed that wave formation is observed when the velocity U of the high-pres-
sure zone (in the plane case the velocity of the contact point) is less than the speed of sound ¢; in the collid-
ing metals,

The wave excitation process was examined in [9], where the equations of linear acoustics were used
to estimate the characteristic dimension of the high-pressure zone. The same paper includes a numerical
calculation of the two-~-dimensional nonstationary collision problem, The computed values of the hydro-
dynamic quantities are compared with the results following from the linear theory.

1. Wave Formation and the Karman Vortex Street. In [4] an
analogy was proposed between wave formation in explosive welding
and the Karman vortex street formed in a fluid flowing over a
cylinder.

We will show that an analysis of the principal factors in-
volved leads to the conclusion that such an analogy is inadmissible.
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Flow over a cylinder is known to create a nonturbulent periodic vortex street on the interval of Reynolds
numbers from 20 to 300, while the frequency of eddy formation is determined by a value of the Strouhal
number equal to 0.2.

The vortex street behind a cylinder is well described by the Oseen approximation of the Navier—
Stokes equations presented in [10]. This is confirmed by comparison with an experiment to calculate the
drag force acting on a cylinder in a flow. The vorticity Q(, y) = uy — vy of the wake formed behind the
cylinder is then given by the following equation:

20 VaU/v sin® E (x— [/
Q gk (s-7) k.—:i;?—)

Tl Va1 Y7 (1.1)

Here, r and 4 are polar coordinates, v is the viscosity of the fluid, a is the cylinder radius, and
- y* =178, .. .1is the Euler constant. If the analogy holds, we may assume that the Oseen approximation
correctly describes the wake beyond the contact point.

The equations of motion take the form

du 1 0p (82u 82u>

5 T = VaE Ty
u o
TR N T v
T T oy \R 6y2>’
Their solution in the functions ¢ and ¥ is written in the form
__ 00 1 pkx 1 v _ o0 1oV .. (1.3)
v=%—7 Ytowem T tma
a0 | 20 P o
Wt =0 Tty —RY a4

The functions ¢ and ¥ are selected on the basis of the following conditions: The flow must be sym-
metrical about the x axis, the wake beyond the contact point must be similar to that behind a cylinder, i.e.,
the vorticity of the unknown wake must differ only by a factor from (1.1), and in the neighborhood of the
contact point x = 0 the asymptotic behavior of the solution must be the same as that for colliding jets ob-
tained in [9].

With these assumptions ¢ and ¥ are uniquely defined, and the vorticity @ has the form

Q = 2eqk Si%’cos S kn (1.5)
The constant ¢; is found after computing the momentum J of the wake, which can be determined from
the first of equations (1.3). On the other hand, it is possible to determine the loss of momentum by consider-
ing the jet collision problem. Comparing the expressions obtained, for the vorticity we finally can write
8182 sin® (1 / 2) < s \¥ sinb 6 k(x-r)

Q=2 = v TV s Te (1.6)

Here, 6, is the thickness of the bottom plate, Comparing (1.1) and (1.6), we see that

2U YalU/v = Bide 0 T /TS
2In(y*Ua/v)—1 =2k e VU /v

Hence we find the radius a of the cylinder, whose wake coincides with that beyond the contact point

v 4Ve 4ay — 4niv 4 &b |«
a4 = —r = exp — ~4——U——0XP‘—‘U—OL‘ (u:Tmssz)

The corresponding Reynolds number

al — 4V .
R:Tzétexp Ta (1.7)

obviously does not exceed 4, which contradicts the experimental data on Karman street formation.
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1t follows from (1.7) that

However, this is possibly only if
ajfan > ¢ = 2.71...

On the other hand, the Strouhal number S can be expressed in terms of the wavelength A

U 200
st (oot
Assuming that X = 20a, as follows from explosive welding experiments [see Eq. 6.1)], we find that the

Strouhal number

20 a 20
S=~ ST —2—2.72 = 27.2

We know from experiments with vortex layers that S = 0.2, In order to estimate the actual values of
the Reynolds and Strouhal numbers in collisions we can use the experimental data on the viscosity of metals
in shock compression [11, 12]. In this case the calculations give

R ~10, 8§~ 10

This discrepancy suggests that the wave formation effects in explosive welding and the formation of
Karman vortex streets are physically different phenomena,

2. Propagation of Linear Perturbations in Colliding Plates. By means of the linear equations of
acoustics [9], we can investigate the possible modes of linear vibration associated with collision and, in re-
lation to the effect of the free surfaces, their damping.

In [9] the following system of equations was employed:

du ou 1 dp v g 1 dp A
Gt UGt m=0 FTtlUlgtaam=0 2.1)

dp ap ou vy
L UL oot (5t 55) =0
Here, U + u, v, and p are the velocity and pressure components, respectively, and p, is the density of
the colliding metals.

In [9] it was also shown that the steady-state solution of (2.1), describing the distribution of the hydro-
dynamic quantities in the neighborhood of the contact point, has the form

_ ., cos(/0) - sin (*/2 6) _ o, Cos(fe8) 9 9
e == P=a (2.2)

Here,

2 Y ViU et s T
B Y G — 2l g =L Y g =1.35,sin? o
ry [( Vi—U“/coz) +y] g z 1 1 5

In this solution it was assumed that the impact angle v is small and that the free surfaces of the plates
are represented by the upper and lower ends of the interval x < 0, y = 0. The shape of the free surface
1 ) was determined from the equation

am am
W+UE=”] (2.3)

y=0
whose solution is the parabola
n=Yiz|20,/U

It is natural to assume that the propagation of periodic perturbations from the neighborhood of the con-
tact point is also described by the solution of system (2.1). Eliminating the velocity components from (2.2),
we obtain the equation for the pressure
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We make the following change of variables:

’ z— I

r = “‘—“—**-———V__.i __.——UZ/ " ' Yy =y
U2\ U (z — o)
i — —_— t —— el 2.5)
g (1 co® ) T o VI—U%fed (

Here, x; is a certain shift of the coordinate origin. In the
new variables Eq. (2.4) takes the form of the usual wave equation

a%p @p 2p
B T 602< bz + 'a_ylz— (26)

This equation has a solution, periodic with respect to time,
of the form

D= Asin (k') Z, (k, V't + y'?) sin (vO -+ a) (tgd =y'j =" (2.7)

Here, 7, is a Bessel function, and « and k, are arbitrary
constants,

Fig. 2

Returning to the initial variables, we obtain

p= Asin [klco ]/1.——- U? / Cozt + T#]ﬁ_—m (x - xo)] sin ('Ve +d«) Zv(k1r2) (2 ‘8)
0 - 0
y e\ . (& — zo)? 2
o=t (L) =y (2.9)

From (2.8) and (2.1) for the velocity components u and v we obtain

U =1y cos (kyco VI — U2/ cg ) +ugsin (ke VI — U2/ ¢ t) (2.10)
v = v, 008 (kico Y1 — U2/ ¢ t) - vesin(kyey Y1 — U%/ ¢g2 1)

Here, Ug, Ug, Vo, and Vg are functions of the coordinates x and y determined from the first two equa-

tions of system (2.1).

Confining our attention to waves going to infinity, in (2.8) we can set
Z, (kr) = H™ (kr)

Here, H,(}) kr) is a Hankel function of the first kind of order v, We assume that the source of the per-
turbations is located at a certain point x, in the high-pressure zone near the contact point, The dimensions
of this zone were determined in [9] and we shall assume that

Zg ~ 8, sin? /2 (2.11)

The order of the Hankel function » and the phase shift aare determined by the following considerations.
The boundary condition p = 0 at the free edge x < 0, y = 0 can be satisfied by setting v = 1/2, 1, 3/2, 2, ...
and selecting « equal to 0 at integral values of ¥ and equal to 7/2 at fractional values of v. Having deter-
mined Ug Ug, Vg, Vg from (2.1) and using (2.10), from (2.3) we can find the wave form at the free surface.

We note that in (2.8) the asymmetrical waves usually observed correspond to the case v =1, In in~
dividual cases, by ensuring the precise symmetry of the collision conditions,. it is possible to observe sym-
metrical waves (Fig. 2) corresponding to v = 1/2. The possibility of the occurrence of higher harmonics,
corresponding to higher modes of symmetry, is not yet clear,

Thus, it is natural to conclude that in most experiments on wave formation the values of the hydro-
dynamic quantities are determined by the pressure equation

p = Asin [klco VT T Te 4 ==

wViorer | " G sing @12)
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e and relations (2.10) for the velocities. Obviously, in the actual process the
L T source is not concentrated in the point x, but distributed over a certain
small volume in the neighborhood of the contact point.

The oscillations described by Eq. (2.12) reflect the actual wave proc-

g J ess only at distances from the contact point considerably exceeding the
S dimension of the high-pressure zone §;sin’(y/2) and less than the thickness
— of the moving plate §;. At greater distances from the contact point the ef-
Fig. 3 fect of the free edges leads to an exponential decline in amplitude.

We will illustrate the "freezing" process with the following element-
ary example. Consider a source of harmonic oscillations moving to the left
along the x axis with velocity U, the distribution of the velocity component along the y axis at y = 0 having
" the following form:

v = sin ot ¢ *+U1

From the equation for the displacement of the free surface (2.3) we have

b/,
;t] =]y =sin aie —(x+U)

Hence we find the free surface at x + Ut > 0 (behind the source)

1 = Ay sin (0z/U) + sin of ¢ *+UD

Here, A, is the amplitude of the waves at the contact surface for sufficiently large t. The equation
obtained shows that, after passage of the source through the point x, in the course of time the shape of the
boundary there is frozen and takes the form

1N = Ag sin (0z /U)

3. Explosive-Welding Waves from the Self-Oscillation Standpoint, 1. As we know from the general
theory of self-oscillations (see, for example, [13]), any self-oscillatory system must contain an oscillator
with a certain frequency w and damping constant w/277,. Moreover, there must be an energy pumping
mechanism, which in actual systems is usually related with the presence of a nonlinear "negative" fric-
tional resistance. The equation describing this process in a system with one degree of freedom has the
form

= (00 ) L= ) (3.1)

Here, ¢ is the deviation of the system from the equilibrium position. A typical graph of the function
f &) for a system with so-called "hard" excitation is presented in Fig. 3. The 7 &) curve can be ap-
proximately represented in the form of a piecewise-constant function (Fig. 3). Obviously, given a weak in-
itial perturbation, in such a system with hard excitation, oscillations do not occur, since the system does
not fall within the interval of nonzero values of f.

Assuming that the self-oscillation frequency is approximately equal to w and that the oscillations of
the point are sinusoidal

E=RBsino (t—1) (3.2)

we can approximately determine their amplitude from energy considerations, multiplying Eq. (3.1) by ¢
and integrating over the oscillation period. We have

T 2 2r m2 2
=[5+ ngz]j =\[-E +er@]a=— 52+ (oBoosor (@Beos0) db~ — 72—+ K2F0B  (3.3)
SO 0

K=K@B) <1 =nb+2mw)

The factor K is present owing to the fact that f(£*) =0 at [£ " | < ¢y. Atlarge B the coefficient K may
be assumed equal to unity. From (3.3) we obtain
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We note that a decrease in f'({) at large ¢ is necessary for the stability of the limit cycle ensuring
the self-oscillatory regime [13].
2. We will consider the case when f({°) is piecewise-linear and the following relations are satisfied:
F@=F @<
FER)=F,>F, (<t<i)
f&)=F3>F, G <ty
In this case, if
1 1 1 . B
W <l P2y 0 <bo

and ¢, is sufficiently large, self-oscillations analogous to the previously considered case are possible in
the system. It is easy to see that the equation

w?B?
270

9n
+ SmB cos 8f (0B cos 8) d6 = 0

[}

has a unique solution. Other nonlinear dependences f(¢) and even f(¢°,¢), leading to the appearance of
self-oscillations, are also possible.

3. In [9], as a result of an analysis of the experimental data and the numerical and analytic solutions
of the equations of hydrodynamics it was established that wave formation requires a sufficiently strong ini-
tial perturbation of the collision process. The expansion wave reaching the contact point from the free
surface of the moving plate was also investigated.

In addition, special experiments, in which perturbations were artificially created — by projections on
the stationary plate — were also performed. These investigations led to the conclusion that wave formation
in explosive welding is not a manifestation of some instability, being a self-oscillatory process with hard
excitation whose mechanism is concentrated in a small neighborhood of the contact point,

In order to apply to the analysis of this process the facts derived above from the theory of oscilla-
tions, it is necessary to determine what must be understood by the deviation £ and the oscillator character-
istics w and 7, and to establish the nature of the collision processes corresponding to the dependence f(&°).

4. The Oscillator, In [9] it was shown with reference to the hydrodynamic collision model that the
density and temperature of the colliding plates differ substantially from their starting values in a neighbor-
hood of the contact point with linear dimension

‘e 2 U\ 208 .o, Y
B= (1= 5) sy S (4.3)

In this neighborhood the speed of sound ¢ also differs substantially from the starting value ¢, and the
region may be regarded as an oscillator with frequency w of the order of ¢ R, i.e.,

o = ¢, R°

In the oscillation process waves are radiated into the surrounding medium; these waves are damped
and the characteristic damping time 7 may be assumed to be of the order of the period

T 2 2mife, R

We will consider an example of such an oscillator in the hydrodynamic approximation, It may be as-
sumed that consideration of the analogous elastic problems will not produce significant changes in the char-
acter and order of magnitude of the frequency and damping constant.

1. The complex oscillator frequencies w=iw — 7! can be determined as the eigenvalues of the fol-
lowing system:
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u 0 1
w+ U (2 ) 5o+ V @ 0) 5+ gy o2 =
xw + U (z, y)Z—Z+V(m,y)g—;+5,(:—,y)Z—Z=0 (4.2)
wp+U (2, 9) S+ V(@ 0 3+ 0@ v @ p) (52 + ‘ZZ} 0

The velocities U(x, y), V(x, y), the density distribution p(x, y), and the square of the speed of sound
¢?(x, y) must be found from the solution of the steady-state problem, a linear model of which was described
in Sec. 2. In the general case it is difficult to find the eigenvalues of this system, and the task involves
laborious machine computations. Below we present a rough calculation of the system for the case U = 0,

V = 0. We note that usually the collision conditions are such that (U2 + V%) /c? < Y,.

We also schematize the distribution of the density and speed of sound, setting

0o (* +y* > R

- (4.3)
p(xv !/) { p* >p0 (zz + y2<Roﬂ)
¢ (a* +y2 > B

c(x, y)={0*>co (@ + b < B°Y)

Since the pressure is equal to zero on the interval x < 0, y = 0, we find the solution of system (4.1) in
the form

p(z, y) = sinb W () 4.4)
Thus, only antisymmetric modes are investigated. Substituting (4.4) into (4.2), we obtain

. ix co  (r>R°)
p = sin6Z, (c— r) (c = { - < R°)> 4.5)

We note that here Z; stands for the different branches of cylindrical functions of the first order for r
less than and greater than R°. For the velocity components we obtain

oD g ) L)

vzgx—{m ZO(—r)——cos29‘_ Zo(m >+%Z1(jci )]}

The condition at infinity (radiation condition) consists in that for r > R°, W(r) coincides correct to an
arbitrary constant with the function Hl(1 inr/c,) (see Sec. 2). At r < R° the regularity at the point x = 0,
y = 0 leads to the equation

W (r) = const J; (—lc%‘- r)

The boundary conditions at r = R° (continuity of p, u, and v) can be satisfied only for a discrete series
of eigenvalues n, We present the values of wR/c;, R/ Ty for a number of values of the ratio p § 00*2 / Poco

po*c*y /poce? == 2 .25 3.38 4.00 4.50 6.00 8.00
aR°/eg=1.80 1.83 1.82 1.85 1.85 1.86
—R°fteq=0.38 0.42 040 0.40 0.44 0.45

From these data it follows that the damping constant R/7¢c, and the frequency wR°/c, depend only weakly on
the parameterp *cy*2/p ci®. In this case, R°/Tcy~ —0.4,wR°/cy = 2, i.e., the frequency is of the order of
the width of the high-pressure zone.

5. Energy Pumping Mechanism. The existence of undamped self-oscillations presupposes that
energy is pumped in in the neighborhood of the contact point, We will attempt to describe a possible vari-
ant of the energy pumping mechanism. We start with the system of equations of hydrodynamics with the
viscous stress tensor

+ 6(pu + B(g;;/z) -0
3(Pu) + 3(P+puz) +3(PW) — 3611 + do1a (5.1)

dy
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3 (pv) 0 (puv) d(p+pv?  Odom 0522
ot + oz + + oy

EAY a8 a8
oT (T +u T +v W) = U,Gyy + (Uy + Vy) 12 + UyOn

Here, S is the entropy density per ynit mass, and the pressure p is a function of density and entropy,
p =p(p, ).

The right side of the last equation determines the heat released in internal friction. It is natural to
assume that the total strength of the heat source is a function of the strain rate distribution.

dy dz -

From system (5.1) we obtain the equation for the pressure
d (4 dp\ 3 (1 dp 3_19_;1)_3_(%
ilwd -l a -l =wlmQ 6.2)
d i 0 2
(W:W+“®?+”E)

If we assume that the function Q(x, y, t) is nonzero in a certain neighborhood of the contact point and
has the character of a dipole, i.e., postulate nonsymmetrical heat release at y > 0 and y < 0, we may con-
clude that the existence of self-osecillations requires that the right side of Eq. (6.2) may, with sufficient ac-
curacy, be regarded as a dipole of strength f approximately represented by a nonlinear function of d (p) /dt.

Here, (p)is the mean pressure in one half of the neighborhood. (The pressure distribution must also be
assumed to be dipole in character.)

For self-oscillations fo exist the nature of the dependence f (d{p) /dt) must be nonlinear, as shown
in Sec. 3.2. In all probability, the nonlinearity of this dependence is a consequence of the plasticity of the
material. In fact, the stress tensor {rji} must be related with the strain rate tensor, as follows:

_ i 0
(Gu 512) —n (ux vy uy - U:) -+ (C n %) (u “}(; Uy ) (5.3)

Gg1 Oas Uy + U Uy — Uy 227 + Uy

The Mises yield condition [14] can be understood as the following relation between n and the strain
rates:
= { Mo (A<Yy)
1Yo /A (A>Y,) (5.4)
A= V (urc - Uy)2 + (uy + vx)z

We assume that in a certain region, modeled in Sec. 2 by a singularity of the Bessel function, har-
monic oscillations are taking place according to the law

ulr, y, ) = uy (z, y) -+ D sin ot yy (z, y)

v (2 g, 1) = vy (& y) + D sin ot v, (z, ) (6-5)

For simplicity we further assume that u; «<uy, vy «<v,. In the region in question the shear stresses
also depend harmonically on time. As a result of the nonlinear relation between 7 and the shear stresses,
the time dependence of Q is not harmonic. It is natural to assume that the energy pumping mechanism is
described precisely by a nonlinearity of this type.

Generally speaking, other types of nonlinear relations between the viscous stresses, strain rates, and
temperature are possible. To establish these dependences it will be necessary to make a detailed investiga-
tion of the behavior of metals at high dynamic pressures.

It is possible that in a thin layer near the contact surface some mechanism similar to Coulomb fric-
tion, capable of pumping in the energy required for the existence of self-oscillation, plays an important
role,
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